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ABSTRACT
Individualized treatment rules (ITRs) tailor treatments according to individual patient characteristics. They
can significantly improve patient care and are thus becoming increasingly popular. The data collected dur-
ing randomized clinical trials are often used to estimate the optimal ITRs. However, these trials are generally
expensive to run, and,moreover, they are not designed to efficiently estimate ITRs. In this article,wepropose
a cost-effective estimation method from an active learning perspective. In particular, our method recruits
only the “most informative” patients (in terms of learning the optimal ITRs) from an ongoing clinical trial.
Simulation studies and real-data examples show that our active clinical trial method significantly improves
on competingmethods.Wederive risk bounds and show that they support theseobservedempirical advan-
tages. Supplementary materials for this article are available online.

1. Introduction

It is widely recognized that different patients respond differ-
ently to the same treatment. Recent advances in personalized
medicine have the potential to improve treatment decisions
in clinical practice by tailoring the clinical interventions to
the patient characteristics. These characteristics include demo-
graphics, medical histories, and genetic or genomic information
(Hamburg and Collins 2010). It is anticipated that these new
developments in personalizedmedicinemay salvage some failed
medications, which is especially important given the low over-
all success rate recently observed in clinical trials (DiMasi et al.
2010).

The success of personalized medicine is contingent on the
correct identification of the best treatments for each individual.
One research direction is subgroup analysis, where the patients
are grouped based on the estimated individual-level treatment
differences (Cai et al. 2011; Foster, Taylor, and Ruberg 2011).
Alternatively, vigorous research has focused on finding optimal
treatment regimens, which yield the greatest benefit overall for
the whole population. Some methods involve fitting a regres-
sion model for the response, and recommending the treatment
achieving the best prediction (Qian andMurphy 2011). Instead,
Zhao et al. (2012) explored the optimal individualized therapies
from a classification perspective (see also Zhang et al. 2012). All
these methods are implemented using data from randomized
clinical trials (RCTs). However, traditional RCTs are primarily
designed to confirm the efficacy of new treatments; they do not
generate comprehensive personalized therapy rules in an effi-
cient manner. Consequently, post-mining data from RCTs are
not ideal for finding optimal treatment strategies (Cui et al. 2002;
Lagakos 2006). RCTs generally require a large sample size to
demonstrate the efficacy of a candidate treatment, and they can
be expensive to run because of the need to treat and monitor a
large number of subjects. In addition, RCTs waste trial resources
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on subjects who experience treatment effects that are relatively
large. Therefore, it would be desirable to design cost-effective
clinical trials for personalizedmedicine. Such trials would high-
light individual differences in responses and take advantage of
continuing advances revealed in the trial (Singer 2005).

We propose an active learning framework for conducting
clinical trials, called active clinical trials. In these trials, patients
are judiciously recruited so that the optimal individualized treat-
ment rules (ITRs) can be learned with fewer patients being
randomized; this is a cost-effective method. Unlike traditional
RCTs, we will exclude the patients for whom the benefit from
one of the treatments is clearly observed, thus concentrating
on those for whom the difference is less pronounced. Specif-
ically, within the classification framework (Zhao et al. 2012),
we first construct “confidence intervals” for the optimal deci-
sion boundary using the data accumulated so far based on either
a frequentist or Bayesian approach. We then selectively enroll
the patients whose optimal treatments are hard to determine,
that is, their benefit differences from the different treatments are
“small,” based on the above confidence intervals. Those patients
are viewed as the most informative for the purpose of learning
the optimal ITRs, and thus they are recruited for randomizations
at the next stage. As will be seen in the empirical and theoreti-
cal analysis, the real-time selection of the right patients indeed
improves the chance of discovering optimal ITRs with a drasti-
cally reduced sample size and cost.

Our work is related to the topic of budgeted learning
(Madani, Lizotte, and Greiner 2004; Raghavan, Madani, and
Jones 2006; Deng et al. 2007) in computer science. These works
aim to find the most accurate classifier subject to a fixed bud-
get. Themain difference is that the responses for the subjects are
assumed to be known, and the covariate information is required.
Our work in the clinical trial setting sequentially applies treat-
ments to selected subjects and then observes their responses.
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Another related topic in computer science is the “multi-armed
bandit problem” (Robbins 1952), where resources are allocated
among multiple arms given a fixed budget. One tries to max-
imize the cumulative rewards over all allocations. This per-
spective is also taken in response-adaptive trials (Rosenberger
and Lachin 1993; Hu and Rosenberger 2006), which allocate
more patients to the better treatment based on the available
patient responses. Thus, such trials can be viewed as exploita-
tive, since most of them adopt myopic strategies by exploiting
the current best arm. Our method is more exploratory, explor-
ing patients close to the decision boundary to learn better ITRs
for future practice. Some adaptive enrichment designs (Wang,
James Hung, andO’Neill 2009; Simon and Simon 2013) are sim-
ilar in that they allow the eligibility criteria to be updated during
the trial. However, our primary goal is to construct informative
and favorable ITRs rather than to confirm the efficacy of one
treatment over another. Ourmethod is also different from adap-
tive randomization procedures, which primarily aim to place
more subjects onto the treatment arm that is more promising
(Rosenberger, Sverdlov, and Hu 2012). Deng, Pineau, and Mur-
phy (2011b) proposed a minimax bandit model for clinical tri-
als that carefully distributes the trial resources, with the same
objective as our method. However, they specify subpopulations
in advance, and the optimal treatments are learned for each sub-
population. The resulting ITRs may not be ideal if the subpop-
ulations are not formed correctly.

In Section 2, we introduce a general methodology for con-
ducting active clinical trials, along with methods for construct-
ing optimal ITRs using the accumulated data. In Section 3, we
discuss the theoretical properties of our approach by providing
a finite sample upper bound on the difference in the expected
outcome under the estimated ITR and the optimal ITR. In Sec-
tion 4, we conduct extensive simulation studies to examine the
empirical performance and also compare the results with those
of Deng, Pineau, and Murphy (2011b). Two real-data examples
are presented in Section 5, and Section 7 provides a discus-
sion. The technical details are presented in the Appendix and
the online supplementary materials.

2. Methodology

2.1 Optimal Individual Treatment Rule

In this section, we discuss a probabilistic framework for study-
ing the optimal ITRs that is similar to that of Qian and Murphy
(2011) and Zhao et al. (2012). Let (X,A,R) be a random triple
with a joint distribution P. Here, X ∈ Rp denotes the patient’s
baseline covariates with marginal distribution �, A is a binary
treatment assignment taking values in {−1, 1}, and R stands for
the treatment outcome (a larger value of R corresponds to a bet-
ter outcome). An ITR D(·) is defined as a function from the
covariate space Rp into the treatment space {−1, 1}.

We use the value function, denoted asV (D), to measure the
quality ofD, which is amarginalmean outcome representing the
overall population mean were all patients to receive treatment
according toD. Our goal is to identify the optimal ITR that yields
the maximum V (D). For any ITR D, let PD be the distribution
of (X,A,R) when A = D(X ), and let ED be the corresponding

expectation. The value functionV (D) = ED(R). Qian andMur-
phy (2011) showed thatV (D) can be expressed as

V (D) = E

[
RI(A = D(X ))

π(A;X )

]
, (2.1)

where E denotes the expectation w.r.t. the joint distribution
P, I(·) is an indicator function, and π(a;X ) is the condi-
tional probability P(A = a|X ) for a ∈ {−1, 1}. For simplicity,
we assume a pure randomization scheme with equal probabil-
ity for different assignments, that is,π(a;X ) = 1/2, throughout
the article.

Let D∗ denote the optimal treatment rule that maximizes
V (D). By rewriting V (D) as V (D) = E(E[RI(D(X ) = 1)|A =
1,X] + E[RI(D(X ) = −1)|A = −1,X]), we obtain

D∗(x) = sign{ f ∗(x)}, (2.2)

where f ∗(x) := E[R|A = 1,X = x] − E[R|A = −1,X = x] is
called the contrast function. The optimal decision boundary is
just the level set {x ∈ Rp : f ∗(x) = 0}. As can be seen, the over-
all benefit will be maximized if the patients satisfying f ∗(x) ≥ 0
receive the alternative treatment (treatment 1), and the others
receive standard care (treatment−1). Hence, the decision is tai-
lored according to the patient’s characteristics represented by X.

To estimate the optimal ITR D∗ from the data
{X (i),A(i),R(i)}ni=1, usually collected from a clinical trial,
one can fit a parametric or nonparametric regression model
for E[R|A = a,X = x] (equivalently, f ∗(x)), and then esti-
mate the optimal ITR by plugging the fitted model into
(2.2). Alternatively, we can replace the problem of maxi-
mizing (2.1) by minimizing a weighted classification error
E [RI(A �= D(X ))/π(A;X )]. In this case, existing classifica-
tion techniques, for example, support vector machines, can
be adapted to estimate D∗(x); see Zhao et al. (2012) for more
details. All of the above methods take the whole (randomized)
clinical trial data as an input, and thus they have no influence on
the data-collection process. They belong to the class of passive
learning methods, also called batch learning. In clinical trials,
the patient-recruiting process is usually long, and the treatment
and monitoring process can be extremely expensive. With a
limited budget and a fixed sample size, we should wisely allocate
the resources, that is, decide who to recruit, to learn the optimal
ITRs at a lower cost. This motivates us to propose active clinical
trials that can identify the optimal ITRs with a significantly
reduced cost.

2.2 Active Clinical Trials

The active learning (AL) approach in the classification litera-
ture is shown to produce accurate classifiers with a significantly
reduced number of label requests; see Dasgupta, Monteleoni,
and Hsu (2007), Balcan, Hanneke, and Wortman (2008), Cas-
tro and Nowak (2008), Koltchinskii (2010), Hanneke (2011),
and Minsker (2012). Recall that the estimation of ITRs can be
thought of as a classification problem. For example, a patient
with a small outcome given the assigned treatment is potentially
misclassified. We use AL techniques to select the “most infor-
mative” patients based on a given pool of prognostic variables,
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Figure . Confidence band for the contrast function.

and then we randomize only the patients with these “informa-
tive” characteristics. The intuition behind this patient-selection
process is simple: if we have confidence that certain patients
will benefit from a particular treatment, we should not recruit
them into the study since they are not likely to contribute to the
estimation of ITRs. However, it is hard to determine the opti-
mal treatment, that is, the sign of f ∗(x), for the patients whose
baseline variables are “close” to the optimal decision bound-
ary. As will be seen from the empirical and theoretical analysis,
patients with such features are more “informative” in the sense
that their outcomes after randomization provide more insight
into the optimal ITRs (to be applied to future patients). More-
over, since patients will not be randomized if we have confidence
in the treatment they should receive, they are less likely to be
exposed to ineffective medications.

We assume that there is no delay in observing the outcome.
For S ⊂ supp(�) and a function f : Rp �→ R, let f |S : S �→ R

be the restriction of f onto S, and define ‖ f ‖∞,S = ∥∥ f |S∥∥∞ :=
sup
x∈S

| f (x)|. Given δ > 0, set

F∞,S( f , δ) := {g : S �→ R : ‖g − f ‖∞,S ≤ δ}
as a δ-band around f on S. A precise description is given in Algo-
rithm 1. Here, we introduce the important notion of an active set
(Minsker 2012), which underlies the majority of active learn-
ing algorithms. At step k of our Algorithm 1, the active set ASk
is defined to be the set of baseline variables for which the best
treatment is not yet known. The active set is characterized by the
confidence interval, that is, x belongs to the active set if and only
if the confidence interval for f ∗(x) contains both positive and
negative elements; Figures 1 and 2 illustrate this. The approxi-
mation of ASk using a regular set actk is discussed in Appendix
A.1.

In practice, it is not necessary to evaluate the active sets
explicitly at each step. Instead, at step k, we repeat the follow-
ing two steps until we reach the number of patients that can be
randomized:

1. Recruit a group of new patients with baseline variables
X (i,k), i = 1, . . . ,Nk.

2. Let f̂i,k(X (i,k)) be the estimator of f ∗(X (i,k)) based on Sk
and Ii,k = [ f̂k(X (i,k)) − δ(X (i,k)), f̂k(X (i,k)) + δ(X (i,k))]
be the confidence interval, where Sk is defined in Algo-
rithm 1 and represents the available sample in the kth
step.

Figure . X (1) belongs to the active set; X (2) does not.

(a) If 0 /∈ Ii,k: drop the patient from the study.
(b) If 0 ∈ Ii,k: randomize the patient, record the outcome

R, and add (X (i,k),A(i,k),R(i,k)) to the current sam-
ple.

The above procedure gives a dataset containing “the most
informative” observations for predicting the optimal treatment.
For every new patient, this dataset will be used to predict the
treatment rule based on that individual’s baseline variables. At
each iteration, wemust specify an estimator of the contrast func-
tion and the corresponding confidence interval. In the next sec-
tion, we will propose two construction methods based on ker-
nel estimation andGaussian process regression, respectively.We
remark that the empirical performance of our method is essen-
tially controlled by the confidence level that we set. This level
also determines the rejection ratio, for example, N = 100 out of
140 total iterations in simulation Scenario 1 of Section 4.

2.3 Confidence Interval Construction

.. Kernel Smoothing Approach
Let K be a smooth kernel function (with bandwidth hn) sat-
isfying Assumption (A2) in Section 3. Define Khn (x0 − X ) :=
K((x0 − X )/hn)/h

p
n. Let η j(x) := E[R|A = j,X = x], j = ±1,

be the conditional expectation of R given A and X. Given n
observations from P, we propose the estimators η̂ j(·; hn) for
j = ±1, and the plug-in estimator f̂ (·; hn) of the contrast func-
tion f ∗(·). At any fixed point x0,

η̂ j(x0; hn) =
∑n

i=1 Khn (x0 − X (i))I(A(i) = j)R(i)∑n
i=1 Khn (x0 − X (i))I(A(i) = j)

, j = ±1,

f̂ (x0; hn) = η̂1(x0; hn) − η̂−1(x0; hn). (2.3)

Here, hn = hn(x0) is an adaptive bandwidth parameter varying
with x0. We need to choose a proper hn(x0), which controls the
local amount of data near x0, to optimally balance the estimation
bias and variance; see Appendix A.2 for the technical details.

Assuming that both η1 and η−1 are Lipschitz continuous with
Lipschitz constants bounded by L, we define

hn, j(x0) = inf
{
h > 0 : L2h2

≥ C1(K,P)∑n
i=1 I

{‖x0 − X (i)‖2 ≤ h
}
I{A(i) = j}

}
, j = ±1,
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Algorithm 1: Active Clinical Trials for Personalized Medicine

input :˜Sample size limit N; confidence α

output:˜D̂ := sign( f̂ )
1 k = 0, act0 := supp(�);
Set the initial N0 := 2�√N�, and LB := N − N0;
for i = 1 to N0 do

Recruit X (i,0) from �;
Randomize X (i,0) to treatment A(i,0) = 1 or −1 with equal probability;
Observe R(i,0);

end

2 Construct the estimator f̂0(x) of f ∗ from S0 = {(X (i,0),A(i,0),R(i,0))}N0

i=1;
while LB > 0 do

3 F̂k :=
{
f : f |actk ∈ F∞,actk ( f̂k; 3

2δk), f |supp(�)\actk ≡ f̂k−1|supp(�)\actk
}

/* δk: confidence band size */;

4 k := k + 1;
ASk :=

{
x ∈ supp(�) : ∃ f1, f2 ∈ F̂k−1, sign( f1(x)) �= sign( f2(x))

}
/* active set */;

Approximate ASk with a regular set actk;
5 if actk ∩ supp(�) = ∅ then

break
end
else

Nk = 2Nk−1;
for i = 1 to �Nk · �(actk)� do

Recruit X (i,k) from the active set �̂k := �actk (dx);
Randomize X (i,k) to treatment A(i,k) = 1 or −1 with equal probability;
Observe R(i,k), Sk :=

{(
X (i,k),A(i,k),R(i,k)) , i ≤ �Nk · �(actk)�

}
;

end

Construct the estimator f̂k(·) of f ∗ based on Sk;
LB := LB − �Nk · �(actk)�;
f̂ := f̂k /* keeping track of the most recent estimator */;

end
end

whereC1(K,P) is a constant depending on the kernelK and dis-
tribution P, and ‖ · ‖2 is the usual Euclidean norm. Set

hn(x0) := max
(
hn,1(x0), hn,−1(x0)

)
. (2.4)

This choice mimics the usual “bias-variance tradeoff”: indeed,
the bias of η̂ j(x0; h) is bounded by the order of Lh, while
(
∑n

i=1 I{‖x0 − X (i)‖2 ≤ h}I{A(i) = j})−1 plays the role of the
variance parameter. Based on the above choice of hn(x0), that
is, (2.4), we define the radius of the confidence interval to be

δ(x0) := t · Lhn(x0),

where t controls the coverage probability. The display above
depends on the unknown constantsC1(K,P) that must be cho-
sen before running the algorithm. Given a certain confidence
level, we recommend selecting the “confidence parameter” t by
reverting the coverage probability error that decays exponen-
tially fast with t; see Corollary A.1.

Remark 1. We are aware that the proposed kernel methods are
unfortunately affected by the “curse of dimensionality.” How-
ever, our theoretical analysis reveals that the empirical perfor-
mance of our kernel estimate essentially depends on the “intrin-
sic dimension” d of the support of the marginal distribution
� (see Assumption (A3) in Section 3), which might be much
lower than the ambient dimension p. The concept of the intrin-
sic dimension originated in geometry and was later introduced
to statistics, for example, Allard, Chen, and Maggioni (2012). It
characterizes a low-dimensional representation embedded in a
high-dimensional space. For example, when the data are linear,
we may use principal component analysis to identify the sub-
space that contains the data. The number of important com-
ponents is the intrinsic dimension d, which can be significantly
smaller than the total number of covariates p. In practice, we fol-
low the local singular value decomposition method, suggested
in Little, Jung, and Maggioni (2009), to determine the intrinsic
dimension.
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.. Gaussian Process Regression Approach
The new method presented in this section is particularly well
suited for applications since it is completely data-driven and
does not require us to specify any unknown parameters in
advance; its performance is demonstrated in Section 4.However,
the price is thatwemust assume that the conditional distribution
of the outcome R given (A,X ) is Gaussian. In other words, if an
individual with baseline variables X receives treatment A = j,
we assume that the outcome satisfies R = η j(X ) + ε for j =
±1, where ε ∼ N(0, σ 2). In this situation, we take a Bayesian
approach by imposing a Gaussian process prior (defined by the
meanm(·) and covariance k(·, ·)) on functions η1(·) and η−1(·);
see chap. 2 of Rasmussen and Williams (2006). For simplicity,
the mean function m(·) is set to be identically zero throughout
this article.

As before, the confidence interval of the contrast function
builds upon those of η1(·) and η−1(·). Hence, we start from the
inference procedure for η1(·). Let {(X (i),R(i))}n1i=1 be the obser-
vations corresponding to the individuals who received treat-
ment 1. The covariance function of the Gaussian process prior
is set as a slight variant of the squared exponential kernel: given
x = (x1, . . . , xp) and x′ = (x′

1, . . . , x′
p) ∈ Rp,

kγ (x, x′) = γ0 exp

(
−

p∑
l=1

(xl − x′
l )
2

2γ 2
l

)

for some positive γ0, . . . , γp. Let Kγ be a p× p matrix
with entries (Kγ )l1,l2 = kγ (Xl1 ,Xl2 ), l1, l2 = 1, . . . , p. Under the
Gaussian error assumption, the marginal distribution of the
vector R = (R(1), . . . ,R(n1 ))T given X = (X (1), . . . ,X (n1 )) is
a multivariate Gaussian with mean 0 and covariance matrix
KR := Kγ + σ 2Ip, where Ip is a p× p identity matrix. The
“optimal” value 
∗ := (γ ∗

0 , . . . , γ ∗
p , σ 2

∗ ) of the parameter 
 =
(γ0, . . . , γp, σ

2) is then “learned” from the data by finding a
local maximum of the marginal log-likelihood

log p(R|X, 
) := −1
2
RTK−1

R R − 1
2
log detKR − n1

2
log 2π

with respect to (γ0, . . . , γp, σ
2); see sec. 5.4.1 in Rasmussen and

Williams (2006) for more details. Therefore, the Gaussian pro-
cess regression is a global method that can automatically select
the bandwidth bymaximizing the data likelihood. This is in con-
trast with the previous kernel method where the bandwidth is
selected locally; see Equation (2.4) above.

We next construct the confidence interval based on the pos-
terior distribution of η1(·) with the optimal 
∗. Given a new
observation with the baseline variable x0, the value of η1(x0) is
estimated by the posterior mean, denoted η̂1(x0), that is,

η̂1(x0) := k
∗ (x0,X)K−1
R R,

where k
∗ (x, x′) := γ ∗
0 exp(−∑p

l=1 (xl − x′
l )
2/2(γ ∗

l )2) for
x, x′ ∈ Rp, and

k
∗ (x0,X) = (k
∗ (x0,X
(1)), . . . , k
∗ (x0,X

(n1 ))).

The variance of the posterior distribution is given by

σ̂ 2
1 (x0) := k
∗ (x0, x0) − k
∗ (x0,X)K−1

R k
∗ (x0,X)T .

The square root of the posterior variance naturally controls the
length of the confidence interval for η1(x0). For example, set-
ting δ1(x0) := 3σ̂1(x0) gives the confidence interval for η1(x0)
of posterior probability > 99% (note that this may not corre-
spond to the frequentist coverage).

Define η̂−1(x0) and the associated δ−1(x0) analogously. We
thus obtain a confidence interval with the center f̂ (x0) :=
η̂1(x0) − η̂−1(x0) and the radius δ(x0) := δ1(x0) + δ−1(x0).
The numerical implementation of this Bayesian inference pro-
cedure can easily be performed with the gpml Matlab toolbox
(Rasmussen and Nickisch 2010).

3. Theoretical Analysis

In this section, we focus our theoretical analysis on the kernel
smoothing approach. The frequentist property of the credible
set for the nonparametric Bayesian method has not been well
developed. Hence, a theoretical analysis of the Gaussian process
regression method is beyond the scope of this article.

For simplicity, we suppose that the marginal distribution �

of the baseline variable vectorX is known.Note that Algorithm1
does not need to know or estimate� explicitly, and this assump-
tion is only for the theoretical analysis. In addition, we assume
the following conditions on the kernel K : Rp �→ R and the dis-
tribution �:

(A0) Both η1(x) := E[R|A = 1,X = x] and η−1(x) :=
E[R|A = −1,X = x] are Lipschitz continuous on Rp

with Lipschitz constants bounded by L.
(A1) The random variable |R| is bounded by 0 < M < ∞ a.s.
(A2) K(x) is a nonnegative, compactly supported, Lipschitz-

continuous function with a Lipschitz constant LK . Moreover,
K(x) ≥ �KI{‖x‖2 ≤ 1} for some �K > 0.

(A3) The “intrinsic dimension” of supp(�) is equal to d for
some integer d ≤ p, and � is equivalent to the uniform dis-
tribution over its support; see Appendix 7 for a more precise
statement.

(A4) Margin condition: there exist K2 = K2(�), γ = γ (�) >

0 such that for all t > 0

�
(
x : | f ∗(x)| ≤ t

) ≤ K2tγ .

Assumption (A3) says that over a “nice” set, � is close to the
uniform distribution; see condition (A.1) in the Appendix. The
intrinsic dimension d is crucial here: in many applications, p is
large but d is small (see Remark 1). Note that the rate in our
main result, Theorem 3.1, depends on d but not on p. Assump-
tion (A4) is an analogue of the well-known margin condition
(Tsybakov 2004), which is commonly used to characterize the
complexity of a binary classification problem. Larger values of
γ mean that the two treatment effects are less likely to be simi-
lar, yet in nontrivial examples, γ ∈ [0, d]. In particular, as indi-
cated in proposition 3.4 in Audibert and Tsybakov (2007), for
a smooth contrast function f ∗(x), γ ∈ [0, d] unless f ∗(x) does
not cross 0 at any point in the interior of supp(�), that is, all the
patients benefit from one treatment. Note that our analysis does
not require γ to be known in advance.

We are now ready to present the (finite-sample) performance
guarantee for our method.
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Theorem 3.1. Let hk = [{log(N/α) + d log(Nk)}/Nk]1/(d+2),

k = 0, . . . , L, where L is the total number of iterations in Algo-
rithm 1. Set the associated δk = 4Chk, where C is a constant
specified in Lemma A.1. With probability greater than 1 − α,
the estimator D̂ of D∗ returned by Algorithm 1 satisfies∣∣V (D̂) −V (D∗)

∣∣ ≤ C̃N− 1+γ

2+d−γ

(
log(N/α)

)θ
,

where N is the number of randomized subjects, θ =
(4+2d−γ )(1+γ )

(2+d)(2+d−γ )
, and C̃ is a constant that depends on the ker-

nel K and distribution �.

It is worth noting that when γ is large (say, close to d), the
rate of Theorem 3.1 is “almost” dimension-free. We also remark
that the rate of Theorem 3.1 cannot be uniformly improved by
any active learning technique, as shown inMinsker (2012). Qian
and Murphy (2011) used a parametricmodeling approach, that
is, they fitted an L1-penalized regression model to estimate the
optimal ITRs, and they obtained a rate of (logN/N)(1+γ )/(2+γ )

with an appropriate choice of tuning parameter. However, their
model could bemisspecified in practice. In contrast, ourmethod
is nonparametric with possibly minimal model assumptions.

4. Simulation Studies

In this section, we assess the empirical performance of the
active clinical trial method. Let X = (X1,X2, . . . ,Xp), where
X1, . . . ,Xp are independent of each other. The distribution of X
varies according to different scenarios detailed below. The treat-
ment A is generated from {−1, 1} with equal probability. The
response R is generated from N(Q0(X,A), 1), where

Q0(X,A) = m0(X ) + T0(X,A).

Here, T0(X,A) is the interaction between the treatment and the
baseline variables. In what follows, U [a, b] stands for the uni-
form distribution on the interval [a, b] ⊂ R. Consider four sce-
narios for T0(X,A):

1. Xl ∼ U [−1, 1], l = 1, 2,m0(X ) = 1 + 2X1 + X2,

T0(X,A) = 0.5(1 − X1 − X2)A.

2. Xl ∼ U [−1, 1], l = 1, 2,m0(X ) = 1 + 2X1 + X2,

T0(X,A) = 1/2 + (1 − X2
1 − X2

2 )(X2
1 + X2

2 − 1)A.

3. p = 3,m0(X ) = 1 + 2X1 + X2 − X3,T0(X,A) = 1.5
(X1X2(1 + X3))A, where X1,X2,X3 are on the sphere
generated as follows. Let X̃1, . . . , X̃3 ∼ U [−1, 1], and

Xl = X̃l√∑3
l=1 X̃2

l

I
( 3∑

l=1

X̃2
l ≤ 1

)
, l = 1, 2, 3.

4. p = 8,m0(X ) = 1 + 2X1 + X2 − X3,T0(X ) = 0.2
(
∑

l is even Xl −
∑

l is odd Xl )A, where X1, . . . ,X8 have
uniform distributionU [−1, 1].

It can be seen that the optimal ITR for Scenario 1 is lin-
ear, that is, D∗(X ) = sign(1 − X1 − X2). The optimal ITR for
Scenario 2 is nonlinear, withD∗(X ) = I(0.3 ≤ X2

1 + X2
2 ≤ 1.7).

Scenario 3 represents the case where the data are supported
on the manifold, that is, a two-dimensional sphere in R3.
The treatment effect in Scenario 3 is highly nonlinear with
D∗(X ) = sign(X1X2(1 + X3)). Scenario 4 has a relatively high-
dimensional covariate, that is, 8, with a linear treatment effect.

We apply the active clinical trial outlined in Algorithm 1. We
implemented both the kernel method in Section 2.3.1, denoted
AL-BV, and the Gaussian process regression method in Section
2.3.2, denoted AL-GP. We used the gpml Matlab toolbox (Ras-
mussen andNickisch 2010) in the lattermethod. The active clin-
ical trial proceeds by selectively recruiting subjects whose dif-
ferential treatment effects are smaller than a threshold, that is,
Steps 3 and 4 of Algorithm 1. This iterative procedure screens
out a certain number of subjects, whose optimal treatments can
be determined with high confidence, and retains the remain-
ing N subjects for estimating the optimal ITR. The active learn-
ing algorithm proposed by Deng, Pineau, and Murphy (2011a)
serves as a comparison. The designed trial therein focuses on
simple ITRs that use a small number of subpopulation cate-
gories to personalize the treatment. In particular, they assume
the subpopulations are known a priori. Throughout the clini-
cal trial, they sequentially select the (subpopulation, treatment)
pair so as to minimize the maximal error of selecting a subop-
timal treatment. For all the scenarios, we form four subgroups
by dichotomizing X1 and X2 at 0. We use MINMAXPICS, the
algorithm name in their paper, to denote this method.

In addition, we compare with two passive learning
approaches: the outcome weighted learning (OWL) method
(Zhao et al. 2012) and the ordinary least squares (OLS) method.
Both methods recruit subjects upon arrival in the clinical trial
and estimate the optimal ITR using the collected data after the
trial ends. N subjects are randomly selected for both methods.
In the OWL method, using the available data, we minimize the
target function Pn

[
Rφ(A f (X ))/π(A;X )

]+ λn‖ f ‖22, where
φ(t ) = max(1 − t, 0) is the hinge loss, Pn is the empirical
measure, and λn is a tuning parameter controlling the amount
of penalization. We consider a nonlinear functional space for
the ITRs, and a Gaussian kernel is used in the implementation.
The optimal ITR is estimated via D̂(x) = sign( f̂ (X )), where
f̂ (x) are the minimizers of the above objective function. In
the OLS method, we first regress R on (X,A,XA), and then
estimate the optimal ITR by finding the treatment that yields a
larger predicted outcome for each individual.

The initial sample size N0 is fixed at 50, while the addi-
tional sample size N − N0 is 50, 100, 200, 300, 400, 500, or 800.
To evaluate the empirical performance, we generated a testing
dataset of sample size 10,000, mimicking a large pool of future
subjects. The estimated ITRs D̂(X ) using the different meth-
ods are validated on this large testing set. Since the main effect
is invariant across different ITRs, we can calculate the average
excess value AEV(D∗, D̂) as

AEV(D∗, D̂) = 1
n

n∑
i=1

[
T0(X (i),D∗) − T0(X (i), D̂)

]
,

n = 10,000

where the empirical average is taken over the validation set. This
quantity directly reflects the expected clinical benefits for future
subjects treated according to D̂(X ), with a smaller value indicat-
ing a better treatment decision.We repeat the process 1000 times
and average the resulting values over all the runs. In Figure 3,
we plot log{AEV(D∗, D̂)} against log(N − N0), where D̂ was
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Figure . Excess values (log scale). Initial size was set to .

obtained using each method. The log-scale is used to give a bet-
ter display of the polynomial convergence rates in the different
methods.

In all the scenarios, our active clinical trials perform uni-
formly better than OWL. In Scenario 1, the treatment effect is
linear, which indicates that OLS is the best possible method.
However, AL-GP has comparable performance, especially when
the sample size is large. The performance of AL-BV also
improves with N. When the treatment effect is nonlinear, as
in Scenarios 2 and 3, the strength of active learning is clearly
demonstrated. Both methods initially perform better for small
sample sizes and then converge much faster as the sample size
grows. In contrast, the values of the estimated ITRs from the
other two methods do not converge (Scenario 3) or do not con-
verge to the optimal value (Scenario 2). In Scenario 4, the num-
ber of covariates is increased to eight. This places severe diffi-
culties on the kernel estimation because of the curse of dimen-
sionality. However, with the linear treatment effect, the AL-GP
results are satisfactory compared with those of OLS. The MIN-
IMAXPICS algorithm performs the best in Scenario 3, where
the subpopulations are correctly defined in advance. When the
prespecification of the subpopulations is incorrect, each sub-
population contains both patients who benefit from treatment
1 and patients who benefit from treatment -1. In this case, the
constructed ITRs are not ideal, even with large sample sizes. In
general, we believe that active learning methods provide robust

results for various treatment mechanisms, which are usually
unknown in practice. We presented some additional simulation
results in the online supplementary materials, where we inves-
tigated scenarios with biomarkers of normal distribution, and
conducted several sensitivity analyses.

5. Real Data Analysis

5.1 Nefazodone–CBASP Clinical Trial

We apply the proposed active learning methods to analyze the
data from the Nefazodone–CBASP clinical trial (Keller et al.
2000). The randomized trial was conducted to compare the effi-
cacy of three treatments for nonpsychotic chronicmajor depres-
sive disorder (MDD), namelyNefazodone, cognitive behavioral-
analysis system of psychotherapy (CBASP), or a combination
of Nefazodone and CBASP. CBASP requires twice-weekly on-
site visits to the clinic, and thus imposes a significant burden
on patients compared with Nefazodone alone. Hence, we com-
pare Nefazodone with the combination treatment, and investi-
gate whether CBASP is necessary for all patients. We perform a
complete case analysis. The score on the 24-item Hamilton rat-
ing scale for depression (HRSD) was the primary outcome, with
higher scores indicating more severe depression. Data from 441
patients were available, with 218 patients randomized to Nefa-
zodone and 223 to the combined treatment group. We consider
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three covariates for tailoring the treatment: the baseline HRSD
scores, the alcohol dependence, and the HAMA somatic anxiety
scores. The latter two covariates were selected by Gunter, Zhu,
andMurphy (2007) as important variables for optimal treatment
decision making.

All the patients are used for the OLS and OWL analysis.
To mimic an active clinical trial, we first randomly select 50
patients as the initial dataset. We then sequentially examine
the remaining patients, and drop those who do not satisfy the
selection criteria. The recruitment stops once an additional 300
patients are enrolled, or all the patients have been examined.
The eligible patients are included in the dataset, assuming that
they have been randomized in an active clinical trial. The treat-
ments they are randomized to in this hypothetical active clin-
ical trial are the actual treatments they received in the com-
pleted trial. In particular, 289 and 350 patients were used to con-
struct the optimal ITRs using AL-BV and AL-GP, respectively.
The estimated ITRs from the different methods were applied
to the whole dataset to calculate the average HRSD scores
due to the ITRs, with smaller values being preferable. Here,
the “average HRSD scores due to the ITRs” are defined to be
Pn[{R̃I(A = D(X )}/π(A)]/Pn[{I(A = D(X )}/π(A)], where R̃
denotes the HRSD scores and π(A) is the probability of being
assigned treatment A. AL-BV recommends combination ther-
apy for 299 patients, giving an average HRSD score of 8.86. AL-
GP recommends this therapy for 386 patients, giving an average
HRSD score of 9.72. OLS andOWL recommend this therapy for
all the patients, yielding a higher score of 10.89. Hence, the treat-
ment rules produced by the active clinical trials not only lead to
a higher overall benefit, but also reduce the time and monetary
commitments for the patients.

We then used a five-fold cross-validation analysis to avoid
potential overfitting. The dataset was partitioned into five sub-
sets. Four of the five subsets were used as training data to con-
struct the optimal ITR, and the remaining subset was used as
the validation set to evaluate the estimated rule. In the train-
ing subset, we applied both active learning and passive learn-
ing methods, that is, OLS and OWL, to construct the optimal
ITRs. The initial sample size was set to 50 for the active learn-
ing methods. The number of additional recruited patients was
20, 30, . . . , 200; these were adaptively selected from the rest of
the training samples. For the passive learning methods, we ran-
domly chose 70, 80, . . . , 250 patients from the training data and
conducted the estimation. The process was repeated 200 times,
and we recorded the average cross-validated values for each
sample size. The results are presented in Figure 4. The active
learning methods initially lead to higher HRSD scores, but they
catch up and continue to improve as the sample size grows. In
particular, we can see that the HRSD scores from our methods
decrease faster than those of the other methods do. After the
additional sample size reaches 120, with the total sample size at
170, the ITR identified by AL-BV yields the lowest score, and
this value can be further improved with larger sample sizes.

5.2 Twelve-Step Intervention on Stimulant Drug Use

These data come from an RCT that aims to evaluate the effec-
tiveness of 8-week group intervention plus individual 12-step

Figure . Mean cross-validated HRSD scores (the lower the better) against addi-
tional sample sizes. The initial sample size was set to .

facilitative intervention for reducing stimulant drug use (Dono-
van et al. 2013). Individuals with stimulant-use disorders were
randomly assigned to treatment as usual (TAU) or to TAU
integrated with Stimulant Abuser Groups to Engage in 12-step
(STAGE-12) intervention.

The primary outcome of interest is the number of days of
self-reported stimulant drug use over the 3- to 6-month post-
randomization period, where a smaller value is preferable. We
use seven baseline variables to evaluate the patients and to con-
struct the optimal ITR: age, average number of days per month
of self-reported stimulant drug use in the 3months prior to ran-
domization, baseline alcohol use, drug use, employment status,
medical status, and psychiatric status composite scores on the
addiction severity index (ASI), where the ASI composite score,
ranging from0 (no endorsement of any problems) to 1 (maximal
endorsement of all problems), is usually taken as an indication of
problem severity; it is perceived to guide the treatment decision
(McGahan et al. 1986).

After removing the missing data, we have 305 participants in
total. We evaluated the different methods on the whole dataset,
with the initial sample size set to 50 and the additional sample
size set to 200. AL-BV and AL-GP assigned 123 and 90 patients
to the STAGE-12 group, with expected outcomes of 11.3 and
12, respectively. OLS and OWL gave overall averages of 11.8
and 12.7 days. We also calculated the cross-validated number
of days of drug use over the 3- to 6-month post-randomization
period. Since the outcome was count data, with considerable
zero-inflation, overdispersion, and a nonlinear trend, we antic-
ipated that the active learning method using a bias-variance
tradeoff for the estimationwould lead to the best results. Indeed,
as shown in Figure 5, AL-BV outperforms the other methods
with a fast overall decreasing trend.While theGaussian assump-
tion is severely violated in this example, AL-GP still improves
with sample size. We note that OLS and OWL do not improve
noticeably as the sample size grows.
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Figure . Mean cross-validated outcomes (number of days of self-reported stimu-
lant drug use over the - to -month post-randomization period, the lower the bet-
ter) against additional sample sizes. The initial sample size was set to .

6. Sample Size Consideration

To design a future study, it is important to plan ahead a sam-
ple size, which is sufficient to guarantee that we will obtain an
ITR very close to the optimal one using the proposed active
clinical trial. Here, we provide a data-driven method that gives
a preliminary assessment of the required sample size. Further
work is warranted to derive the sample size formula for such an
exploratory trial. Let V0 be an average patient outcome based
on the standard care. Our goal is to determine a minimal sam-
ple size N∗ such that: (1) the power to reject the hypothesis
V (D∗) = V0 is at least 1 − β whenV (D∗) ≥ (1 + ρ)V0; and (2)
Pr(|V (D̂N∗ ) −V (D∗)| ≤ ε) ≥ 1 − α (Laber et al. 2015), where
ε, α, and ρ are prespecified constants and D̂N is the result-
ing estimator based on N samples from the active clinical trial.
Since we have constructed a nonasymptotic error bound for
|V (D̂N ) −V (D∗)| in terms of the sample size N in Theorem
3.1, we suggest to obtain N∗ by inverting the above error bound
such that Pr(|V (D̂N∗ ) −V (D∗)| ≤ min(ρV0, ε)) ≥ 1 − α. By
doing so, we are able to provide finite sample evidence that the
optimal ITR yields a larger average benefit than the standard
care, and, moreover, the average benefit of the estimated rule is
approximately optimal. The constant γ ∈ [0, d] will be deter-
mined based on prior knowledge, or can be set to a range of
values to examine the resulting sample sizes. The unknown con-
stant C̃ can be determined via simulations. Given d, γ , θ , and C̃,
the required sample size N∗, such that with probability greater
than 1 − α, |V (D̂N∗ ) −V (D∗)| ≤ min(ρV0, ε), can be found by
setting C̃N∗− 1+γ

2+d−γ

(
log(N∗/α)

)θ = min(ρV0, ε). The required

sample sizes vary by the allocated initial sample size N0. There-
fore, our sample size calculation is conditional on a specifiedN0.
We will illustrate the proposed strategy by designing a future
study to explore the optimal ITRs for patients with MDD. The
Nefazodone-CBASP clinical trial is used as the basis for plan-
ning.

Consider two treatment options, Nefazodone only versus
the combined treatment. The average HRSD score in the com-
bined treatment group is 10.96. It is desirable to develop an ITR
that can at least reduce the expected HRSD score that would
be achieved by 15% with probability greater than 80%, that is,
ρV0 ≈ 1.7 and α = 0.2. We will use three tailoring variables
with d = 3. To determine C̃, we adopt a bootstrap method. We
will bootstrap the data, a total of 441 patients, 10,000 times. An
active clinical trial, with 50 initial and 100 additional patients,
will be implemented with each bootstrapped sample to esti-
mate the optimal ITR. The average HRSD score under each
estimated ITR will be recorded. We denote these scores as
V̂ B
1 , . . . , V̂ B

10,000. Let k∗ = argmink=1,...,10,000V̂
B
k . V̂

B
k∗ will be used

as an estimate of V (D∗). Denote the 80 percentile of |V̂ B
k −

V̂ B
k∗ |, k �= k∗, k = 1, . . . , 10,000 as D̂iff. C̃ can be obtained using

C̃ = N
1+γ

2+d−γ

(
log(N/α)

)−θ × D̂iff, where N = 150 and α = 0.2.
We will assess different γ ’s with γ = 0.5, 1, 1.5, 2, 2.5, and 3,
which lead to different θ ’s and different estimates of C̃. Using
the outlined strategy, we suggest to plan the sample size for the
future study according to Table 1.

7. Discussion

In this article, we propose an active clinical trial with the goal
of constructing favorable ITRs at a minimal cost. This new
paradigm is distinct from the standard clinical trial framework
that is designed for treatment evaluation. Along with the new
designs, we also present new analysis and inference tools that
are often practically useful and theoretically efficient. Twometh-
ods are presented to construct the confidence interval in the
algorithm. The kernel smoothing method is better in the sit-
uation where a few important tailoring variables are known
a priori. However, due to the curse of dimensionality, it can-
not handle a covariate space of moderate to high dimension.
The Gaussian process regression approach performs better in
this situation. However, the kernel smoothing method does
not assume a specific underlying distribution of the outcomes,
whereas the Gaussian process regression approach requires the
outcome to follow a Gaussian distribution, which may not be
appropriate for discrete outcomes. Since the goal of the proposed
trial is to explore the optimal treatment rules, it is a learning
stage. The results should be further validated in a confirmatory
trial.

In practice, we may also want to include individuals who
would be known to benefit from the treatment. Instead of

Table . Planned sample size for different combinations of (γ , ε).

ε γ = 0.5 γ = 1 γ = 1.5 γ = 2 γ = 2.5

.     
.     
.     
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dropping certain patients whose confidence interval for the con-
trast function does not contain 0, we can enroll all patients with
different priority (quantified by probability). Specifically, we can
prioritize those patients, whose confidence interval of the con-
trast function contains 0, by assigning larger probabilities, while
enrolling patients, whose confidence interval for the contrast
function does not contain 0, with lower probabilities. Under this
more flexible framework, individuals who benefit from the treat-
ment are also included in the trial such that the marginal treat-
ment effects can be investigated. In addition, when there is a
small difference between twomedications, treatment choice will
likely depend on other considerations such as cost, side effects,
etc. Our framework can take into account those factors that can
be quantified. By allowing a ratio of the cost per treatment rela-
tive to the cost of a worse disease outcome, say δ, which reflects
the patients’ tolerance of treatment burden relative to tolerance
of the disease burden (Vickers, Kattan, and Sargent 2007; Huang
and Laber 2014), wemaximizeV (D) − δP(A = 1). The optimal
rule is instead given by D∗(x) = sign{ f ∗(x) − δ}. In this case,
the active clinical trial will enroll patients from whom the value
of f ∗(x) is close to δ, since these patients are close to the decision
boundary and thus most informative.

We next discuss two directions for future research. First, our
method can easily be extended to incorporate multi-category
treatments, where patients are recruited based on the mini-
mum differential treatment effect of all the pairwise compar-
isons. For continuous treatments, one possibility is to discretize
the continuous treatment into different percentiles and then
apply the extended method for multi-category treatments. Sec-
ond, in this article, we assume that the outcomes of the pre-
vious patients have been observed before we enroll the next
patient. In fact, the proposed active clinical trials can be con-
ducted with delayed responses, provided the required estimates
(for the contrast function) can be updated as data become
available, that is, some responses can be collected during the
study period. We can also update the estimates after groups
of responses instead of individual responses. There have been
some recent developments on handling the problem of delayed
outcomes in phase I–II trials, for example, by treating them
as missing values and applying imputation strategies (Jin et al.
2014).Wewould like to explore such options in the future. There
are two other interesting extensions that we are pursuing: (i) a
more general contrast function that can accommodate a high-
dimensional or discrete covariate; and (ii) a dynamic treatment
regime for a sequence of treatment rules (Murphy 2003; Robins
2004).

Appendix A: Technical Proofs

A.1. Intrinsic Dimension of supp(�)

We explain the meaning of “intrinsic dimension” introduced in
Assumption (A3) here.We say that supp(�) possesses a tree decom-
position T = {Ti, j, i ≥ 1, j = 1 . . . J(i)

}
if

1. T1,1 = supp(�), and {Ti, j}J(i)j=1 forms a disjoint partition of
supp(�) for all i ≥ 1.

2. Nested partition: ∀i ≥ 2, j = 1, . . . , J(i), there exists a
unique 1 ≤ k ≤ J(i − 1) such that Ti, j ⊂ Ti−1,k.

3. Bounded diameter: for all i ≥ 1, 1 ≤ j ≤ J(i),

diam(Ti, j) := sup
x,y∈Ti, j

‖x − y‖2 ≤ K12−i

for some K1 = K1(�).
4. Regularity: for any i ≥ 1, 1 ≤ j ≤ J(i) and 0 < r ≤ 2−i the

following holds: there exists a 1 ≤ d ≤ p (d is the intrinsic
dimension) such that for all x ∈ Ti, j ,

c1rd ≤ �(B(x, r) ∩ Ti, j) ≤ c2rd (A.1)

for some 0 < c1(�) ≤ c2(�) < ∞, which are independent
of i, j. Here, B(x, r) is the Euclidean ball of radius r centered
at x.

A simple example that gives a good intuition to the tree decom-
position is the uniform distribution over the unit cube inRp. In this
case, the tree decomposition is given by partitioning the unit cube
into dyadic cubes and d = p. If supp(�) is contained in a proper
subspaceW of Rp, then d ≤ dim(W ).

Let Bi be the sigma-algebra generated by the collection of sets
{Ti, j, j = 1, . . . , J(i)} (a partition of supp(�) on the level i). A
regular approximation of ASk in Algorithm 1 is given by actk :=⋂{

A : A ∈ Bmk−1 , A ⊃ ASk
}
.

A.2. Properties of Kernel Estimate

A... Preliminaries
For a measurable set S ⊂ supp(�), define �S(dx) := �(dx|x ∈ S)
as the conditional distribution on S, and set

Qh(x|S) : =
∫
Rp

Kh
(
x − y

)
d�S(y).

Since � is assumed to be known, we can directly compute Qh(x|S)
now.Accordingly, wemodify the original kernel estimate for η j , that
is, (2.3), as follows: let {(X (i),A(i),R(i)), i = 1 . . .N} be an iid sam-
ple from the conditional joint distribution of (X,A,R) given that
X ∈ S, and set

η̂ j(x; h, S) = 1
N

N∑
i=1

R(i)I{A(i) = j}Kh
(
x − X (i))

Qh(x|S)P(A(i) = j)
, j = ±1,

f̂ (x; h, S) = η̂1(x; h, S) − η̂−1(x; h, S). (A.2)

We will discuss properties of these estimators in below.
Let h > 0, S ∈ B j , and h ≤ 2− j , and define

Qh,m(x|S) :=
∫
Rp

‖x − y‖m2 Kh
(
x − y

)
d�S(y). (A.3)

We next study the upper and lower bounds of Qh,m(x|S) based
on Assumptions (A1)–(A4). Since K is bounded and compactly
supported, there exists R = RK > 0 such that K(x) ≤ ‖K‖∞I{x ∈
B(0,RK )}. Let F > 0 be a large enough constant, namely, Fd ≥
2c2/c1. Recall that c1, c2 are defined in (A.1). Note that Assumption
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(A2) implies the following:

Qh,m(x|S) ≥ �K

∫
B(x,h)∩S

‖x − y‖m2 d�S(y)

≥ �K (h/F )
m

⎛⎜⎝ ∫
B(x,h)∩S

d�S(y) −
∫

B(x,h/F )∩S

d�S(y)

⎞⎟⎠
≥ �K (h/F )

m

(
c1hd − c2(h/F )d

)
�(S)

≥ 1
2Fm �Kc1

hd+m

�(S)

:= c3
hd+m

�(S)
, (A.4)

and

Qh,m(x|S) ≤ ‖K‖∞
∫

B(x,RKh)∩A

‖x − y‖m2 d�S(y) ≤ ‖K‖∞Rm+d
K c2

× hd+m

�(S)
:= c4

hd+m

�(S)
. (A.5)

In what follows, we will set Qh(x|S) := Qh,0(x) for brevity.

A... Some Bounds for the Kernel Estimators
In this subsection, we derive basic concentration inequalities for the
kernel estimators of η j(x) = E[R|A = j,X = x], j = ±1 restricted
to S, that is, η̂ j(x; h, S) defined in (A.2). The proof of the results can
be found in the online supplementary materials.

Lemma A.1. For all t > 0 satisfying t + d2 log(1/h) ≤ nhd , with
probability ≥ 1 − 2e−t ,

sup
x∈supp(�)∩S

|̂η j(x; h) − η j(x)|

≤ C

(
h +

√
�(S)(t + d2 log(1/h))

nhd

)
,

whereC = C(M, c1, c2, L, LK, ‖K‖∞, �K,RK ) is a constant.

The following corollary is immediate:

Corollary A.1. Set hn :=
{
�(S)(t + d log(n/�(S)))/n

}1/(d+2).
Then, under assumptions of Lemma A.1, with probability
≥ 1 − 4e−t ,

sup
x∈supp(�)∩S

| f̂ (x; hn) − f ∗(x)| ≤ 4Chn,

where constant C is the same as in Lemma A.1.

A.3. Proof of Theorem 3.1

A... Comparison Inequality
Our Lemma A.2 below illustrates the connection between the risk
V (D̂) −V (D∗) of a treatment rule D̂(x) = sign( f̂ (x)) and the sup-
norm ‖ f̂ − f ∗‖∞,supp(�).

Lemma A.2. Under the margin assumption (A4),

V (D̂) −V (D∗)

≤ C(γ )‖( f̂ − f ∗)I
{
sign( f̂ ) �= sign( f ∗)

}
‖1+γ

∞,supp(�)
.

Proof. It is easy to see that V (D̂) −V (D∗) =
2E
(| f ∗(X )|I{D̂(X ) �= D∗(X )}). The rest of the argument repeats

lemma 5.1 in Audibert and Tsybakov (2007).

A... Main Proof
Our main goal is to control the size of the set actk defined
by Algorithm 1. In turn, these bounds depend on the size of
the confidence bands for f ∗(x) (denoted by δk). Suppose L ≤ N
is the number of iterations performed by the algorithm before
termination.

LetNact
k := �Nk · �(actk)� be the number of labels requested on

the kth iteration of the algorithm. We first claim that the following
bounds hold uniformly for all 1 ≤ k ≤ L with probability at least
1 − α:

‖ f ∗ − f̂k‖∞,actk ≤ C1

(
log(N/α) + d log(Nk)

Nk

)1/(d+2)

,

�(actk) ≤ C2

(
log(N/α) + d log(Nk−1)

Nk−1

)γ /(d+2)

,(A.6)

where Cj = Cj(M, c1, c2, L, LK, ‖K‖∞, �K,RK, γ ), j = 1, 2. This
claim will be proved later.

Let E be the event of probability≥ 1 − α onwhich both inequal-
ities of (A.6) hold, and assume that it occurs. Second inequality of
(A.6) implies, together with the fact that Nk = 2Nk−1 by definition,
that the number of randomized subjects on each step 1 ≤ k ≤ L sat-
isfies

Nact
k

= �Nk�(actk)� ≤ 2N
2+d−γ

2+d
k−1

(
log(N/α) + d log(Nk−1)

)γ /(d+2)

with probability≥ 1 − α. IfN is the maximum number of random-
ized subjects the algorithm is allowed to request, then

N ≤
L∑

k=0

Nact
k ≤ 2

(
log(N/α) + d log(NL)

)γ /(d+2)
L∑

k=0

N
2+d−γ

2+d
k

≤ C3(γ , d)
(
log(N/α) + d log(NL)

)γ /(d+2) N
2+d−γ

2+d
L ,

and one easily deduces that on the last iteration L we have

NL ≥ c(γ ,�, d)

(
N

log(N/α)

) 2+d
2+d−γ

. (A.7)

Recall that NL is defined in Algorithm 1.
To obtain the risk bound of the theorem from (A.7), we apply

Lemma A.2:

V (D̂) −V (D∗)

≤ C(γ )

∥∥∥( f̂L − f ∗) · I
{
sign( f̂L) �= D∗

}∥∥∥1+γ

∞,supp(�)
.

(A.8)

Since
{
sign( f̂L) �= D∗

}
⊆ actL whenever bounds (A.6) hold, it

remains to estimate ‖ f̂L − f ∗‖∞,actL . Recalling the first inequality
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of (A.6) once again (for k = L), we get

‖( f̂L − f ∗)‖∞,actL ≤ C1

(
log(N/α) + d log(NL)

NL

)1/(d+2)

≤ C̃N− 1
2+d−γ

(
log(N/α)

)q
,

where q = 4+2d−γ

(2+d)(2+d−γ )
, which together with (A.8) yields the final

result.
It remains to show both inequalities of (A.6). We start with the

boundon ‖ f̂k − f ∗‖∞,actk . First, note that by construction, for every
k ≥ 1 the samples (X (i,k),A(i,k),R(i,k)), i = 1 . . . �Nk�(actk)� are
conditionally independent given the data

⋃k−1
i=1 Si collected on steps

1, . . . , k − 1, with conditional distribution of X (i,k) being �actk .
Thus, we can apply Corollary A.1 conditionally on

⋃k−1
i=1 Si with

t = log 4N
α

to get that with probability ≥ 1 − α/N,

‖ f̂k − f ∗‖∞,actk

≤ 4C
( log α

4N + d log(�Nk�(actk)�/�(actk))
�Nk�(actk)�/�(actk)

)1/(d+2)

≤ 8Chk.

It remains to integrate the bound with respect to the distribution of⋃k−1
i=1 Si:

P
(
‖ f̂k − f ∗‖∞,actk ≥ 8Chk

)
= EP

(
‖ f̂k − f ∗‖∞,actk ≥ 8Chk

∣∣ k−1⋃
i=1

Si

)
≤ α

N
.

The union bound over all 1 ≤ k ≤ L ≤ N gives the result.
Finally, we will prove the second inequality of (A.6), the bound

for the size of the active sets actk. This is the place where assumption
(A3) on the tree decomposition and margin assumption (A4) play
the key role. To obtain the bound, we will compare two estimators
of f ∗: the first is the kernel estimator f̂k constructed by the Algo-
rithm 1 on step k, and the second is the piecewise-constant estima-
tor f̄k with similar approximation properties to f̂k. Namely, f̄k is the
L2(�)-projection of f ∗ on the linear space of piecewise-constant

functions of the form g(x) =
J(mk )∑
j=1

α jI{Tmk, j}(x), α j ∈ R. Recall

thatTi, j is defined in the tree decomposition of Section 7. As a result,
we will be able to relate the “active sets” associated to these estima-
tors, taking advantage of the fact that the active set associated to f̄k is
always a union of the sets from a collection {Tmk, j, j = 1 . . . J(mk)}.

Let E1 be the event of probability ≥ 1 − α on which ‖ f̂k −
f ∗‖∞,actk ≤ δk for any k ≥ 0, where δk = 4Chk. Assume that E1
occurs.

The following inclusions hold (for the definition of ASk+1, see
Algorithm 1):{

x : | f ∗(x)| < δk/2
} ⊆ ASk+1 ⊆ {x : | f ∗(x)| < 5δk/2

}
.(A.9)

Indeed,

| f ∗(x)| < δk/2 ⇒ | f̂k(x)| < δk/2 + | f ∗(x) − f̂k(x)|
<

3
2
δk ⇒ x ∈ ASk+1

and

x ∈ ASk+1 ⇒ | f̂k(x)| <
3
2
δk ⇒ | f ∗(x)| <

5
2
δk.

For all x ∈ Tmk, j , set f̄k(x) := 1
�(Tmk , j )

∫
Tmk , j

f ∗(y)d�(y), and note

that

| f ∗(x) − f̄k(x)| ≤ 1
�(Tmk, j)

∫
Tmk , j

| f ∗(y) − f ∗(x)|d�(y)

≤ 2L
�(Tmk, j)

∫
Tmk , j

|x − y|d�(y)

≤ 2Ldiam(Tmk, j) ≤ 2LK12−mk ≤ 4LK1hk,

where the last two inequalities follow from part 3 of assumption
(A3) given in Appendix 7, and from the definition of mk. Define
τk := max (5δk, 4LK1hk) ≤ C5δk, F̄k+1 := { f : | f (x) − f̄k(x)| ≤
(3/2)τk, ∀x ∈ actk} to be the band of size (3/2)τk around f̄k, and

Āk+1 :=
{
x ∈ actk : ∃ f1, f2 ∈ F̄k+1, sign( f1(x)) �= sign( f2(x))

}
.

By a reasoning similar to above, we have the inclusions{
x : | f ∗(x)| < τk/2

} ⊆ Āk+1 ⊆ {x : | f ∗(x)| < 5τk/2
}
.(A.10)

Moreover, by the definition of τk, we have the inequality 5δk/2 ≤
τk/2. Hence (A.9) and (A.10) imply that ASk+1 ⊆ Āk+1. It remains
to note that

1. Āk+1 is the union of the sets from a collection {Tmk, j, j =
1 . . . J(mk)}, hence Āk+1 ⊇ actk+1;

2. By (A.10) and assumption (A4),

�(actk+1) ≤ �(Āk+1) ≤ �(
{
x : | f ∗(x)| < 5τk/2

}
)

≤ K2(5τk/2)γ ≤ C6δ
γ

k ,

hence proving the claim.

Supplementary Materials

Supplementary materials available online include: additional simulation
results with normal biomarkers; sensitivity analysis regarding different pre-
specified parameters; performance of a doubly robust augmented inverse
probability weighted estimator; and proof of Lemma A.1.
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